Sunday, 30 November 2014

Liposomal Formulation Makes Medication Delivery Safer And More Effective

By Mayra Pierce


Nanotechnology is a branch of science that manipulates materials on a molecular and atomic level. Liposomes are artificially created microscopic bubbles composed of materials similar to human cell membranes called phospholipids, portions of which are alternately repelled or attracted to water. Liposomal formulation is a process that creates these structures for a more effective use in the delivery of medications.

The significance of these vesicular containers containing soluble molecules first became apparent soon after they appeared during the 1960s. Pharmacists as well as researchers recognized their potential for safely and slowly administering specific pharmaceuticals important to treating cancer and other illnesses. The new method could target undesirable cells more efficiently, and had fewer side issues associated with some medications.

The concept they use is radically different because it does not depend of standard modes of absorption typical of IV or oral administration. Conventional chemical processes can make management of specialized drugs more difficult. They are indiscriminate in their toxicity, and affect healthy organs as well, resulting in unnecessary damage and more lengthy recovery. When delivered via liposomes, release of toxic medication can be better controlled.

Molecules of medication are suspended in water inside these cellular structures, and encased in membranes created both naturally or artificially. They can be designed in ways that make them ideal mechanisms for enveloping hydrophilic drugs, or molecular groups that are attracted to and become easily transported in water. When manufactured using current processes, they form two groups called multilammelar and unilammelar, both of which include subcategories.

Individual liposomes surround the drug molecules with a membrane, and then transfer those medications to other cells when activated. Molecules can be released into the body by fusing certain layers with other physical cells, effectively delivering a small amount of medication. Others strategies rely on chemical reactions that encourage diffusion on a molecular level. The net result is a steadier, more controlled release.

This not only creates medicines that are more easily administered and managed, but does so in a bio-compatible way that leaves little toxic residue in non-targeted organs. Relatively recent developments involve the use of ultrasound to trigger release in specific locations where they are necessary. Other delivery methods include using the respiratory system, especially the lungs, where they can be activated slowly, reducing unwanted toxicity.

It is still comparatively costly to manufacture these microscopic capsules. As practicality increases and research finds new uses and procedures, expenses will probably decrease, but still remain high. As is the case in most newer technologies, there are still many unresolved issues. Some forms of these artificial cells have had problems with wall or membrane leakage, while others have been degraded by oxidation and other natural processes.

Like some other medical innovations, liposomes are now being introduced into consumer products. They are currently promoted as a beneficial way to administer herbal, vitamin and mineral supplements, and some individuals have created their own unique formulations. Although commercial applications produce controversy regarding efficacy, the continued development of new processes provides the basis for more effective medical uses.




About the Author:



No comments:

Post a Comment